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Spinodal decomposition of a symmetric binary fluid mixture in quasi two dimensions:
Local orientational ordering of fluid tubes
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We demonstrate here the experimental evidence that a stripe pattern having a local orientational
order appears for a phase-separating symmetric fluid mixture confined in quasi two dimensions. This
local parallel arrangement of bicontinuous tubes is probably induced by (i) the spatial symmetry
breaking of a bicontinuous pattern due to the geometrical confinement and (ii) the interface tension
that favors tubes with a straight rodlike shape. Confinement into quasi two dimensions is likely pre-
requisite for this unusual ordering phenomenon. This could be the rare example of phase separation
with a stripe pattern for simple binary mixtures having no long-range repulsive interaction. We also
show the discrete nature of the elementary coarsening process of bicontinuous phase separation.

PACS number(s): 68.45.Gd, 64.75.+g, 64.60.—i, 05.70.Fh

I. INTRODUCTION

Spatial patterns of isotropic two-phase systems having
no bulk energy associated with geometry [1] can be clas-
sified into two types for the symmetric composition: (i) a
“stripe pattern,” which is an interconnected pattern with
a local orientational order where domains are arranged
locally in parallel (see, e.g., Refs. [2] and [3]), and (ii) a
“bicontinuous pattern,” which is an interconnected pat-
tern without such a local orientational order (see, e.g.,
Fig. 32 in Ref. [4]). A stripe pattern has so far been
found only in the phase separation of systems with a non-
local, long-range repulsive interaction such as magneto-
static and electrostatic interactions [2,3]. Isotropic phase
separation of simple binary fluids having no such interac-
tion, on the other hand, is known to exhibit a bicontin-
uous pattern with a randomly interconnected structure,
at the symmetric composition [5].

For any system with a scalar conserved order pa-
rameter, an increase in the composition symmetry in-
creases the interdomain spatial correlation. Further-
more, in binary fluid mixtures, spinodal decomposition
is strongly affected by the long-range hydrodynamic in-
teraction unique to fluid systems [5,6] and the coupling
strength between concentration and velocity fields is crit-
ically dependent on whether the phase-separated pattern
is bicontinuous or not. Siggia [7] studied the hydrody-
namic coarsening dynamics of bicontinuous phase sepa-
ration in a rather intuitive way and found the growth law
of R ~ t, where R is the characteristic domain size. Much
experimental research [8,9] has also indicated that phase-
separation dynamics in symmetric fluid mixtures can be
well described by this mechanism. Since it is rather dif-
ficult to attack the late-stage coarsening dynamics on
the basis of analytical theories [10], this problem has re-
cently been intensively studied by computer simulations
[4,11-16]. Because of the lack of information on the local
structure, however, the coarsening process and the inter-
domain interaction in a bicontinuous pattern are largely
unknown, although the coarsening of a single tube has
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been studied theoretically based on capillary instability
[7,17).

In this paper, we demonstrate the experimental ev-
idence that the local orientational order of a bicontinu-
ous pattern in phase-separating symmetric fluid mixtures
is largely enhanced by the geometrical confinement into
quasi two dimensions. It has so far been believed that a
stripe pattern can be observed only in systems having a
competition between a nonlocal, long-range repulsive in-
teraction and a short-range attractive interaction; how-
ever, our study indicates that such a pattern could be
observed even for simple fluid mixtures under a suitable
geometrical confinement.

II. EXPERIMENT

The sample used was a mixture of oligomers of e-
caprolactone (OCL) and styrene (OS). The number av-
eraged molecular weights of OCL and OS were 2000 and
1000, respectively. Polydispersity ratios of OCL and OS
were 1.2 and 1.04, respectively. This mixture has the
upper-critical-solution-temperature-type phase diagram.
The critical composition was OCL:0S(33:67) and the
critical temperature was 135.5°C. In this mixture OCL
is more wettable to glass walls than OS. In bulk phase
separation of a fluid mixture at the symmetric compo-
sition, we have a bicontinuous pattern. Under a geo-
metrical confinement, however, the more-wettable phase
often wets the solid surface by a rapid hydrodynamic
process [18-22]. Accordingly, a bicontinuous pattern is
quickly destroyed and the macroscopic wetting layers are
formed on the solid surface. For studying a coarsening
process of a bicontinuous pattern in quasi two dimen-
sions, therefore, we need to avoid such a drastic wetting
effect. We have realized naive experimental conditions
that allows us to avoid the effect in the following way:
We carefully chose the quench depth and the composi-
tion to realize the situation that the minority phase is
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OS rich and nonwettable to glass by introducing a slight
asymmetry that does not break the bicontinuous nature
of the phase-separation pattern. This enables us to keep
having a bicontinuous pattern for phase separation even
in the confined geometry. The sample thickness d is con-
trolled by using monodisperse glass beads as spacers to
be about 2 pm. The temperature quench is performed
by using a hot stage (Linkam TH-600RMS) with a rate
of 1.5°C/s. The phase-separation kinetics is studied by
video phase-contrast microscopy and analyzed by digital
image analysis (DIA) [23].

III. RESULTS

Figure 1 shows the typical coarsening process of bi-
continuous phase separation in OCL:0S(32:68) at T' =
131.0°C [24]. We can see the elementary process of coars-
ening, namely, the breakup of tubes, which was more
clearly confirmed by the slow playback of the video tape
recording the phase-separation process. This elementary
process is likely the same in the coarsening of a bulk bi-
continuous structure. It can be noticed especially in Figs.
1(b) and 1(c) that tubes have a local orientational order.
Comparing the observed patterns with bulk bicontinu-
ous patterns reported in the literature (see, e.g., Fig. 18
in [9] and Fig. 32 in Ref. [4]), we notice that our pat-
terns have more local orientational order than the bulk
bicontinuous patterns and further that the ratio between
the length (L) and the thickness (D) of a tube, which
could be correlated to the persistent length of a tube, is
much larger in our case (L/D > 3) than in the bulk case
(L/D ~ 1). In the final stage [see Figs. 1(e) and 1(f)],
we also observe the morphological transformation from
the bicontinuous to droplet pattern.

Figure 2 shows the size dependence of the two-
dimensional power spectrum S(¢), which is calculated
from the real-space images by using DIA [23]. The dig-
itized two-dimensional image was numerically Fourier
transformed with a Hamming window after a zero-filling
operation and the power spectrum S(q) was calculated.
S(q) for a “small” region [see Figs. 2(a) and 2(b)] has
a clear anisotropy, reflecting the “local” orientational or-
der. The local orientational order can also be directly
confirmed by observation of Figs. 1(b) and 1(c) from the
fact that tubes are locally in parallel. S(q) becomes more
isotropic with an increase in the size of the original im-
age. S(g) for a large region of more than 50x 50 pum? is
almost perfectly isotropic [see Fig. 2(c)].

Since S(§) is isotropic for a large image (see Fig. 2), we
obtain the radial distribution function in g space, S(g),
by circularly averaging S(¢) for an image with the size
of 400 x 400 points (~ 60 x 60 um?). Figure 3 indicates
the temporal change in the structure factor S(g) in the
three-dimensional plot, while Figs. 4(a) and 4(b) show
the change in the two-dimensional plots. The multiple
peaks (at least four peaks) are clearly observed in S(g).
This feature of S(¢) stemming from the local parallel ar-
rangement of tubes is clearly observed for 1s <t <4s. It
should be noted that these peaks are not due to the arti-
fact of the analysis since the analysis gives a usual single-

FIG. 1.

Coarsening process of bicontinuous spin-
odal decomposition of the nearly symmetric mixture
[OCL:0S(32:68)] in the quasi-two-dimensional configuration
for T =131.0°C. (a) 1 s, (b) 25, (c) 4, (d) 65, (¢) 8s, and
(f) 19 s. In (b) and (c), we can clearly see the local parallel
ordering of fluid tubes. In the late stage [(e) and (f)], we see
the indication of the gradual morphological transition from a
bicontinuous to a droplet pattern.

peaked S(q) for any droplet patterns of spinodal decom-
position in several mixtures including OCL-OS mixtures
and further the validity of the analysis has been carefully
checked for various simulated patterns. The ratios of the
three higher peak wave numbers to the lowest peak wave
number are about 2, 3, and 4, respectively. We made a
fitting of the summation of four Gaussian functions to
the observed S(g), as shown in Figs. 4(a) and 4(b).

Figures 5(a) and 5(b) show the temporal changes of
the peak wave number ¢, and the peak intensity S(gp)
of each Gaussian component, respectively. The peak of
the lowest wave number becomes more and more domi-
nant with phase-separation time ¢, while the peak of the
higher wave number decays faster. The g, of the lowest
wave number peak is almost constant, but finally starts
to decrease for t > 4 s.

To understand the average coarsening behavior, S(q) is
smoothed to obtain a single peak by filtering the original
S(g) with a Gaussian window function (low-pass filter)
of exp[—f/(5fmax)?] with s = 0.06 (s is the smoothing
factor and fax is the highest frequency in the Fourier

FIG. 2. Two-dimensional images of the power spectra
S(q)’s, at 3 s for three real-space images with different sizes:
(a) 15x15 pm?, (b) 25x25 pm?, and (c) 50x50 pm?. The
anisotropic scattering patterns in (a) and (b) clearly indicate
the existence of the local orientational order of tubes. In the
image in (c), on the other hand, we cannot see any anisotropy.
This result shows the existence of the local orientational order
with a finite correlation length.
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FIG. 3. Three-dimensional plot of the temporal change in
S(g). The multiple-peak structure in S(q) is observed in the
early stage, while it disappears in the late stage.

space). The temporal change in the filtered S(g) is shown
in Fig. 6. The temporal change in the peak wave num-
ber of the filtered S(g) shown in Fig. 6 is plotted against
time in Fig. 7. As expected from Fig. 5, the averaged
peak position shifts to the lower wave number with time,
reflecting the overall coarsening. We see sequentially the
initial slow coarsening regime, the relation g, oc t~! char-
acteristic of the late stage of bulk bicontinuous phase sep-
aration, the relation of g, o t—1/3 unique to bicontinuous
phase separation in quasi two dimensions, and finally the
slower coarsening. The final slowing down of the coarsen-
ing likely reflects the morphological transformation from
the bicontinuous to the droplet pattern due to the slight
composition asymmetry (see Fig. 1).
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FIG. 4. Temporal change in S(g). The lines are those ob-
tained by the fitting of Gaussian functions at (a) early stage
and (b) late stage. Multiple-peak structures can be evidently
seen in the figures.
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FIG. 5. Temporal change in the (a) peak wave numbers
and (b) intensities of the fitted four Gaussian functions for
bicontinuous phase separation. The lines are a guide for the
eye.

S(q.1) i
o
LR
JIRRR
8 R R
s
2%

% LR
R
R R A
L R A
0 s e eyt
e
s

!
,5535/,27/1111/”/”/
%

4

2/ 71111 77 S42s0s05,
e Taraa It I I T II I EIT IO s R
G s
L e
4
L

FIG. 6. Three-dimensional plot of the temporal change in
the smoothed structure factor S(g) obtained from that shown
in Fig. 3. This shows the overall coarsening dynamics.
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FIG. 7. Temporal change in the average peak wave number
gp of the smoothed S(g). The line in the heavily shaded area
has a slope of —1 and that in the lightly shaded area has a
slope of —1/3.
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IV. DISCUSSION

A. Possible physical origins of multiple scattering
peaks

The most striking feature of the phase-separation be-
havior in quasi two dimensions is the existence of multiple
peaks in S(g). The multiple peaks are likely caused by (i)
the discrete nature of the elementary coarsening behavior
and (ii) the local orientational order of tubes.

1. Discrete nature of the elementary process of
coarsening

First we discuss the discrete nature of the hydrody-
namic coarsening process of a bicontinuous pattern. The
coarsening is composed of two elementary processes [25]:
(i) continuous thickening and thinning of tubes due to
capillary instability unique to a tube configuration of
two-phase fluids and (ii) the resulting breakup of tubes
and the shape relaxation driven by the interface tension.
This coarsening process partly preserves the memory of
the initial bicontinuous structure since it is essentially
dominated by the breakup of the existing tubes and the
shape relaxation of the broken tubes into the part of the
original structure. The disappearance of a tube increases
the local intertube distance between the two neighbor-
ing tubes. This would result in the coexistence of a few
characteristic wavelength in the pattern. The discrete
process is thus likely responsible for the formation of the
multiple peaks. It should be noted that the local order-
ing of tubes is necessary for this mechanism to produce
the multiple peaks. The tube network density decreases
with time by the breakup of tubes; this coarsening pro-
cess is not completely continuous and is dominated by
both the discrete and the continuous processes as long as
the percolated nature of domains is preserved.

2. Local orientational ordering of fluid tubes

Next we consider the local ordering of tubes. This or-
dering is likely enhanced by the confinement of tubes into
quasi two dimensions. This phenomenon can be under-
stood if we consider the situation that many rods of the
diameter of D are confined into a quasi-two-dimensional
capillary having the thickness d slightly larger than D.
This picture is supported by the above observation that
the persistent length of a tube is longer in our case than
in the usual bulk bicontinuous pattern. This ordering re-
quires a repulsive interaction between rods. In symmetric
binary mixtures, an apparent repulsive interaction may
come from the conserved nature of the order parameter,
which produces the periodical change in concentration.
In our case, the initial tube diameter is rather close to
the film thickness and thus only a single tube can ex-
ist between the walls. Further, the tube configuration is
stabilized since a tube of the nonwettable, slightly mi-
nority phase has a repulsive interaction with the walls
[21]. In relation to the local ordering and the resulting

higher-order peaks, it should be mentioned that there
is a shoulder in S(g) around 2q, [9,26] or 3q, [4,13,27]
even for bulk hydrodynamic phase separation in the late
stage. This was observed in both experiments [9,27] and
simulations [4,13]. The shoulder was interpreted as an
indication of the local orientational order by Bates and
Wiltzius [9] and Ohta and Nozaki [26]. Our present study
is consistent with their interpretation, although the local
orientational order is much more enhanced for quasi two
dimensions than for three dimensions.

Here we consider why the persistent length of a tube
is significantly increased in quasi two dimensions com-
pared to three dimensions. This can be explained as fol-
lows. The phase-separated structure of the two phases
are largely dominated by the interface energy in the late
stage since there the concentration in each phase is al-
most in its local equilibrium. Suppose 1/R; and 1/R,
are the local principal curvatures. The local mean curva-
ture is given by H = (1/2)(1/R1+1/R;). Since in simple
binary mixtures we need not consider the Gaussian cur-
vature, the interface, which is saddlelike everywhere, sat-
isfies requirements for nonplanar minimum area (H = 0).
This is consistent with the observation of L/D ~ 1 for
bulk bicontinuous patterns. In three dimensions, there-
fore, the spongelike pattern made of a saddlelike interface
(see, e.g., Fig. 32 in Ref. [4]) is favored and commonly
observed for isometric bulk partitions [1]. In quasi two
dimensions, on the other hand, the spatial symmetry is
broken by the geometrical confinement and we cannot
construct a spongelike pattern as in bulk. The elemen-
tary pattern is changed from a pattern with a saddle-
like interface to a pattern with a cylindrical interface by
the geometrical restriction along the thickness direction.
The nonwettability of the slightly minority domain to
the walls favors tubes of a cylindrical shape. The local
mean curvature H is given by H = (1/2)(1/L +1/R) for
2R < d, where 1/L is the curvature parallel to the walls.
It should be noted that there is no freedom of tube defor-
mation along the direction perpendicular to the walls. To
lower the interface energy, the straight configuration of a
tube with small 1/L is favored in quasi two dimensions.
This is likely the origin of the long persistent length of a
tube. The persistent length of a tube and the resulting
orientational order are probably increased with an in-
crease in the interface tension o. Thus there might exist
two length scales (R and L) characterizing this pattern.
In the late stage, the local orientational order is gradually
decreased by (i) the decrease in the local curvature due
to the domain coarsening, (ii) the transition of the cross-
sectional shape of a tube from circle to ellipse (the di-
mensional crossover from three to two dimensions), and,
more significantly, (iii) the morphological transformation
from a tube to a droplet due to the slight composition
asymmetry. This is consistent with the observation that
for R > d (t > 4 s) the local orientational order starts to
disappear: The multiple-peak structure of S(g) almost
disappears for t > 7 s.

B. Overall coarsening dynamics

Here we discuss the overall coarsening dynamics shown
in Fig. 7 to clarify the relation between the spatial char-
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acteristics of patterns and the overall coarsening dynam-
ics. First, we briefly consider the initial and the interme-
diate stages of bicontinuous phase separation. The initial
stage of phase separation is likely dominated by the en-
hancement of thermal concentration fluctuation via con-
centration diffusion. Nonlinearity causes the coarsening
after the initial linear regime and the hydrodynamic in-
teraction starts to play some roles in coarsening. This
process is seen in Fig. 7 as the initial slow coarsen-
ing regime. This early stage coarsening, which is often
characterized by t1/3 or t1/4, is probably largely domi-
nated by diffusion process [5,6]. There should also be
a transient process from diffusional coarsening to hydro-
dynamic coarsening [10], reflecting the formation of the
sharp interface. A sufficiently sharp interface is likely
prerequisite to the strong coupling between concentra-
tion and velocity fields, namely, the hydrodynamic inter-
action. It is a future problem to clarify how sharp the
interface should be to cause hydrodynamic coarsening
and how the transition from the diffusion to the hydro-
dynamic regime proceeds.

In the late stage, we need to consider the effect of
the dimensionality on bicontinuous phase separation un-
der the influence of the hydrodynamic interaction since
the domain size becomes comparable to the characteris-
tic spatial scale of the system. The coarsening dynam-
ics of a bicontinuous structure after the formation of a
sharp interface was first studied by Siggia [7] for three
dimensions. He obtained the coarsening law g, o< t~! on
the basis that the coarsening is dominated by the tube
hydrodynamic instability [7]: Fluctuation in a tube di-
ameter is enhanced by the capillary pressure difference
along the tube axis. This is essentially the same mech-
anism as the Rayleigh instability of a one-dimensional
fluid tube. This coarsening law was confirmed in many
systems by experiments [8,9] and also by computer sim-
ulations [11,4,13-16]. For purely two-dimensional fluid
systems [6,15,16], the coarsening of bicontinuous phase
separation is described by the initial diffusive growth of
gp ~ t/? and the late-stage hydrodynamic growth of
dp ~ t2/3 (6].

For quasi-two-dimensional fluid systems, on the other
hand, the problem is very complicated because of the di-
mensional crossover and further due to the wetting effect
on the solid walls. When the minority phase is more wet-
table to the glass, the wetting of the more wettable phase
to the solid walls significantly affects phase-separation
dynamics [18-22]. When the minority phase is less wet-
table to the glass, on the other hand, there is no drastic
wetting effect and the tubes of the nonwettable phase
likely sit between the two substrates [28]. Our experi-
ments correspond to this latter situation. For this case,
we have the dimensional crossover of a tube from three
to two dimensions with its coarsening. The behavior can
be explained on the basis of the Navier-Stokes equation
28]

dpP
2,
nviv = —, (1)

where 7 is the viscosity, P is the pressure, v is the ve-

locity, and z is the coordinate along a tube. When the
characteristic size of a tube is less than the thickness of
film, a tube has a cross section of a circular shape. For a
tube of radius R, we obtain v ~ OR/8t ~ o /7, following
Siggia’s discussion [7]. Thus we get the coarsening law of
R ~ (0 /n)t. When the characteristic size exceeds the film
thickness d, on the other hand, a tube has a cross section
of an ellipsoidal shape. For a tube of short radius d and
long radius R, nv/d? ~ o /R? according to Eq. (1). Thus
the coarsening dynamics is described by R3 ~ (od?/n)t
[28]. We expect the crossover of the coarsening dynamics
from g, ~ t~! [7] to g, ~ t~1/3 [12,28], reflecting the
dimensional crossover from three to two dimensions. Ac-
cording to Fig. 7, the slowing down of the coarsening
rate occurs around t =4 s. Direct observation (see Fig.
1) tells us that the tube size is equal to the thickness d
(~ 2 pm) around 4 s. This is quite consistent with the
above picture that the temporal change in the growth
exponent « from —1 to —1/3, which occurs around ¢t = 4
s, is caused by the crossover between the tube diame-
ter and the film thickness. In the final stage of phase
separation (¢ > 7 s), the domain coarsening further slows
down (apparently a ~ 1/9, which is a transient exponent
having little physical meaning) and at the same time the
multiple-peak structure of S(q) disappears (see Fig. 3).
This can qualitatively be explained by the morphological
transformation from a bicontinuous to a droplet pattern
induced by the slight composition asymmetry (see Fig.
1). This morphological transition destroys the local ori-
entational order and leads to the disappearance of the
multiple-peak structure of S(g) (see Fig. 3). We can
never avoid this effect of composition symmetry in any
actual experiments and a complete symmetric situation
can be realized only by simulations. Although R ~ t1/3
[6,12,28] for both bicontinuous and droplet phase separa-
tion in quasi two dimensions, the prefactor for the diffu-
sive growth of droplets is much smaller than that for the
hydrodynamic coarsening of bicontinuous tubes in quasi
two dimensions: R3 ~ (kgT/mn)t for the former, while
R3 ~ (0d?/n)t for the latter. From the two-scale-factor
universality [29], o ~ 0.2kpT/£2, where £ is the correla-
tion length or the interface thickness. The ratio of the
prefactor of the hydrodynamic growth to that of the dif-
fusive growth is proportional to (d/£)2? (> 1). This dras-
tic decrease in the prefactor caused by the morphological
transition is likely responsible for the slowing down of
the coarsening. The system is likely in the gradual tran-
sitional regime even in the late stage of our observation:
This is confirmed by the coexistence of bicontinuous and
droplet structures [see Figs. 1(e) and 1(f)]. Since the
time span of each power-law behavior in Fig. 7 is very
narrow, further careful studies are necessary to confirm
the above picture on the different coarsening stages.

V. CONCLUSION

In summary, we have demonstrated the local orienta-
tional order of the phase-separated pattern and the dis-
crete nature of the elementary coarsening process for bi-
continuous phase separation of a symmetric fluid mixture
confined in the two-dimensional capillary. The discrete
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nature of the coarsening process is intrinsic to bicontinu-
ous spinodal decomposition of fluid mixtures, irrespective
of whether the system is confined or not, since the tube
hydrodynamic instability eventually leads to the break-
up of tubes without exception. On the other hand, the
enhancement of the local orientational order can be ex-
plained by the spatial symmetry breaking of the bicon-
tinuous pattern induced by the geometrical confinement.
In this quasi-two-dimensional configuration the interface
energy likely favors a stripe pattern with a local orien-
tational order, while in bulk a spongelike pattern with
a zero-mean curvature is favored. The pattern observed
here is likely a rare example of a transient, nonequilib-
rium stripelike pattern that is caused only by the inter-
face energy and the conserved nature of the order pa-
rameter. It should be stressed that our binary polymer
mixture does not have any long-range repulsive interac-
tion between the components and thus it can be regarded

as a simple fluid mixture. This study gives us important
information on the elementary process of the hydrody-
namic coarsening of a bicontinuous pattern, which has so
far been largely unexplored. We think that the basic idea
described in this paper can be applied even to the coars-
ening process of bicontinuous spinodal decomposition of
fluid mixtures in bulk. Further experimental and theo-
retical studies are highly desirable for the quantitative
understanding of the phenomenon.
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FIG. 1. Coarsening process of bicontinuous spin-
odal decomposition of the nearly symmetric mixture
[OCL:085(32:68)] in the quasi-two-dimensional configuration
for T =131.0°C. (a) 1s,(b) 2s, (c)4s,(d) 6s, (e) 8s, and
(f) 19 s. In (b) and (c), we can clearly see the local parallel
ordering of fluid tubes. In the late stage [(e) and (f)], we see
the indication of the gradual morphological transition from a
bicontinuous to a droplet pattern.



FIG. 2. Two-dimensional images of the power spectra
S(q)’s, at 3 s for three real-space images with different sizes:
(a) 15x15 pm?, (b) 25%25 um?, and (c) 50x50 pm*. The
anisotropic scattering patterns in (a) and (b) clearly indicate
the existence of the local orientational order of tubes. In the
image in (c), on the other hand, we cannot see any anisotropy.
This result shows the existence of the local orientational order
with a finite correlation length.
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FIG. 4. Temporal change in S(g). The lines are those ob-
tained by the fitting of Gaussian functions at (a) early stage
and (b) late stage. Multiple-peak structures can be evidently

seen in the figures.



